
Software

Craftmanship

Los Del DGIIM, losdeldgiim.github.io

Doble Grado en Ingenieŕıa Informática y Matemáticas
Universidad de Granada

https://losdeldgiim.github.io/

Esta obra está bajo una Licencia Creative Commons
Atribución-NoComercial-SinDerivadas 4.0 Internacional
(CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta
obra en cualquier medio o formato, siempre y cuando des
el crédito adecuado a los autores originales y no persigas
fines comerciales.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Software

Craftmanship

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

https://losdeldgiim.github.io/

Software Craftmanship

2 losdeldgiim.github.io

https://losdeldgiim.github.io/

Índice general

1. Clean Code 5
1.1. Meaningful names . 5
1.2. Functions . 6
1.3. Comments . 7

3

Software Craftmanship Índice general

4 losdeldgiim.github.io

https://losdeldgiim.github.io/

1. Clean Code

We will focus on code, as we don’t only want to write good code, but also tell
the difference between good and bad code. However, we should firstly assume some
claims:

There will always be code

In a system, there will always be requirements (as with no requirements, the
system would not be needed). Code is simply a high specification of those
requirements. In addition, given that we will have programming languages
with high abstraction levels and that we will use AI, code will not disappear.

Code is written for humans

Code is almost never just written once and then forgotten. We should always
assume that code will be read by other people, and thus, we should write it in
a way that is easy to understand.

Bad code will bring your company down

If bad code is written, the cost of solving bugs will increase, and thus, the
company will lose money. Code smells, which are indicators of bad code (they
may not always be bugs), may include duplicated or commented code, long
methods, or large classes.

Start from the scratch will not fix the problem

When bad code becames so unmanageable, it may be tempting to start from
scratch. However, this is not a good idea, as it will take a lot of time and
resources, it may not solve the problem, and it may even lead to two systems
developped in parallel, which will be a nightmare to maintain.

In order to solve the problem, code should always be kept clean, following the
Boyscout Rule: “Always leave the code cleaner than you found it”.

Once we have assumed these claims, we can start talking about clean code. Even
though there is no single definition of clean code, it should just be as easy, minimal
and simple as possible. It should clearly express its intent. We will focus on some
points that will help us to write clean code.

1.1. Meaningful names

We name a lot of components in our code, such as variables, functions, classes,
etc. We should always try to give them meaningful names, as they will help us to
understand the code.

5

Software Craftmanship 1. Clean Code

1. Use intention-revealing names.

int x; is not a good name, as it does not reveal the intent of the variable.

2. Avoid disinformation.

We should not misuse known abbreviations, imply data types, or use similar
names for different things.

3. Make meaningful distinctions.

We should not use the same name for different things, as it will be confusing.
What is the difference between a1 and a2? We should use names that clearly
distinguish between different things.

4. Avoid encodings

Even though it was done in the past, type of scope information should not be
encoded in the name, as it should nowadays be provided by the IDE.

5. Regarding classes:

Nouns should be used for classes, while verbs should be used for methods.
Accessors (getters), mutators (setters), and predicates should be named
accordingly, as they are very common and should be easily identifiable.

6. Solution vs Problem Domain names

Code that is related to the problem domain should be named accordingly,
while code that is related to the solution domain should be named in a way
that reflects its purpose.

7. Use short, pronounceable names.

A name should be as short as possible, as long as it provides enough context.

Finding good names is not easy, but it is worth the effort, as it will make our
code much easier to understand and maintain.

1.2. Functions

Functions are one of the most important components of our code, as they are
the building blocks of our programs. We should always try to write functions that
are clean and easy to understand. Some guidelines for writing clean functions are:

1. Small functions.

Functions should be small (ideally, 3 lines or less), as they are easier to un-
derstand and maintain. If a function is too long, it may be a sign that it is
doing too much and should be split into smaller functions.

This may lead to a lot of functions, aspect that may be criticized and that may
even impact performance. Therefore, each one should find the right balance
between the number of functions and their size.

6 losdeldgiim.github.io

https://losdeldgiim.github.io/

Software Craftmanship 1. Clean Code

2. Do one thing.

A function should do one thing and do it well (Error handling is needed and
is not considered as doing more than one thing). If the developper is tempted
to write a comment before a block of code, it may be a sign that the function
is doing too much and should be split into smaller functions.

3. One Level of Abstraction per Function.

A function should not mix different levels of abstraction. Each time a function
is extracted, it should be at a lower level of abstraction than the one that calls
it.

4. Regarding arguments:

a) Low number of arguments.

Functions should have a low number of arguments (ideally, 0 or 1), as they
could be messed up when calling the function. If too many arguments are
needed, maybe they should be encapsulated in an object.

b) Output arguments should be avoided.

It is assumed that arguments flow in the function, not out of it.

c) Flag arguments should be avoided.

5. They should have no side effects.

6. Command / Query Separation.

Functions should either do something (command) or answer something (query),
but not both. If a function does both, it may be a sign that it is doing too
much and should be split into smaller functions.

7. DRY (Don’t Repeat Yourself).

8. Exceptions should be used instead of return codes.

9. Multiple return statements are acceptable.

Functions should ideally follow a Strict-Structured Programming style, which
means that they should have a single entry and a single exit point (only one
return statement, no break, continue, or goto statements). However, in some
cases, it may be acceptable to have multiple return statements, as long as they
are used in a way that does not make the code harder to understand.

1.3. Comments

Comments are a necessary evil. They are really extendedly used, but they are
not always good. They may be outdated, they may be misleading, and they may
even be used to explain bad code. Bad comments lead to people ignoring them, and
thus, they may even hide important information.

The programmer should explain himself through the code, not through com-
ments. Some bad examples are:

7 losdeldgiim.github.io

https://losdeldgiim.github.io/

Software Craftmanship 1. Clean Code

int d; // elapsed time in days

Noise/Redundant Comments, as

int calculatePay() { // calculate the pay

Using a difficult condition and then explaining it with a comment, instead of
just using a bool variable with a meaningful name or a function that encap-
sulated the condition.

Comments that try to explain bad code, instead of just refactoring it to make
it easier to understand.

Mandatory comments, which are required by the company or by the project,
but that do not provide any useful information.

Non-Local information

Comments should not provide information that is not local to the code they
are commenting, as it may be easily forgotten and thus, lead to confusion.

Comments of different sections of a function

If a function is too long and it is divided into different sections, it may be
a sign that the function is doing too much and should be split into smaller
functions.

Closing brace comments

When a function is too long, it may be difficult to know which closing brace
corresponds to which opening brace. However, if the function is too long, it
should be split into smaller functions, and thus, closing brace comments should
not be needed.

Journal comments & Attributions

The VCS should be used to track changes and authorship, not comments.

Commented-out code

Again, the VCS should be used to track changes and to recover old code if
needed, not comments.

However, there are some good comments, such as:

Legal comments, which are required by law or by the company.

Explanation of intention

Sometimes, a decision is made in a way that is not obvious, and it may be worth
explaining the intention behind it. People may not agree with the decision, but
at least they will understand it.

Warning of consequences

8 losdeldgiim.github.io

https://losdeldgiim.github.io/

Software Craftmanship 1. Clean Code

Amplification of a point in the code that is not obvious.

People may not understand why a certain point in the code is important, and it
may be worth amplifying it with a comment. If not done, another developper
may change that point in the code, not understanding its importance, and
thus, breaking the code.

Comments to create Public API documentation (e.g., Javadoc).

Lastly, there are some comments that are not good, but that may be necessary,
such as:

Clarification of a point in the code that is not obvious.

Sometimes, a point in the code is not obvious, and it may be worth clarifying
it with a comment. For instance, when a function returns a value that is
not obvious, or when a complex regular expression is used, it may be worth
clarifying it with a comment. However, it is risky because if the code is changed,
the comment may become outdated and thus, misleading.

TODO comments, which indicate that something needs to be done in the
future.

They may be used to ask a colleague to work on something, a reminder to
change a part that depends on something else... but never to clean up bad
code later.

Modern IDEs have tools to track TODO comments, but they should be used
with caution, as they may be forgotten and thus, lead to technical debt. The
Boyscout Rule should be followed.

On conclusion, comments should be used with caution, as they may be outdated,
misleading, and even hide important information. The code should explain itself, and
if a comment is needed to explain a point in the code, it may be a sign that the code
is not clean and should be refactored to make it easier to understand.

9 losdeldgiim.github.io

https://losdeldgiim.github.io/

	Clean Code
	Meaningful names
	Functions
	Comments

